Publicaciones Google Scholar de
1980 a
2021
Título |
Fuente |
Fecha |
Avoiding the order reduction when solving second-order in time PDEs with Fractional Step Runge–Kutta–Nyström methods |
Computers & Mathematics with Applications , 2016 |
2016 |
Efficient numerical solvers for the nonlinear beam and wave equations |
Journal of Physics: Conference Series 410 (1), 012023 , 2013 |
2013 |
High-order symmetric multistep cosine methods |
Applied Numerical Mathematics 66, 30-44 , 2013 |
2013 |
Numerical resolution of linear evolution multidimensional problems of second order in time |
Numerical Methods for Partial Differential Equations 28 (2), 597-620 , 2012 |
2012 |
Stability and resonances of multistep cosine methods |
J. Comput. Math. v30, 517-532 , 2012 |
2012 |
Construction and Analysis of High Order Symmetric Multistep Cosine Methods |
AIP Conference Proceedings 1281 (1), 1828-1830 , 2010 |
2010 |
Multistep cosine methods for second-order partial differential systems |
IMA journal of numerical analysis 30 (2), 431-461 , 2010 |
2010 |
The stability of rational approximations of cosine functions on Hilbert spaces |
Applied Numerical Mathematics 59 (1), 21-38 , 2009 |
2009 |
Optimal time order when implicit Runge–Kutta–Nyström methods solve linear partial differential equations |
Applied Numerical Mathematics 58 (5), 539-562 , 2008 |
2008 |
Métodos Runge-Kutta-Nyström de Pasos Fraccionarios y reducción de orden |
XX Congreso de Ecuaciones Diferenciales y Aplicaciones. Sevilla, 24-28 de … , 2007 |
2007 |
Stable Runge–Kutta–Nyström methods for dissipative stiff problems |
Numerical Algorithms 42 (2), 193-203 , 2006 |
2006 |
Stability of Runge–Kutta–Nyström methods |
Journal of computational and applied mathematics 189 (1), 120-131 , 2006 |
2006 |
Order reduction and how to avoid it when explicit Runge–Kutta–Nyström methods are used to solve linear partial differential equations |
Journal of computational and applied mathematics 176 (2), 293-318 , 2005 |
2005 |
Discretización mediante métodos Runge-Kutta-Nyström de ecuaciones en derivadas parciales de segundo orden en tiempo |
Universidad de Valladolid , 2005 |
2005 |